
Cryptography Enhanced Ad-Hoc
Approach to P2P Overlays
Michal Zima

Faculty of Informatics
Masaryk University

Brno, Czech Republic
E-mail: xzima1@fi.muni.cz

Eva Hladká
Faculty of Informatics

Masaryk University
Brno, Czech Republic

E-mail: eva@fi.muni.cz

Abstract—We address the problem of a secure direct com-
munication of two arbitrary peers in a P2P network without
knowing each other’s IP addresses. An efficient solution to this
problem will provide a practically usable way of communication
to privacy-sensitive P2P applications. Traditionally, P2P archi-
tectures view this problem as a problem of mutual anonymity
of a message sender and receiver, but usual solutions suffer
from various inefficiencies or complexities. By looking at the
problem from a perspective of an ad-hoc network, we are able
to apply a familiar approach of multihop communication and
ad-hoc routing algorithms to a P2P overlay. Introduced usage of
a public key as a node’s identifier adds further security features,
including data integrity through digital signatures, or end-to-end
encryption. Proposed P2P overlay has been successfully used for
building a decentralised cryptocurrency exchange Coincer.

I. INTRODUCTION

Many applications need arbitrary two peers to be able
to communicate with each other, nonetheless some of them
extend this requirement to also minimising a risk of exposure
of peers’ IP addresses (identities). The motivation might be
just to tackle privacy concerns or to prevent targeted attacks
against users of the application. In our case, we develop a
decentralised exchange of cryptocurrencies: Coincer [1]. By
hiding IP addresses we want to provide users with a similar
level of privacy as cryptocurrencies usually offer. Moreover,
as Coincer’s trading protocol may span from tens of minutes
(due to inherent properties of the cryptocurrencies in order to
maintain security of the trade) up to several hours (depending
on degree of cooperation between the respective users) it
is very beneficial to conceal IP addresses of peers, since it
hinders efforts of attackers to prevent their trading partner from
finishing the trade or even directly attacking them.

In this paper we propose a simple unstructured anony-
mous P2P overlay with efficient communication. We treat
an unstructured P2P network as an ad-hoc network. Hence,
we modify for this purpose a simple ad-hoc routing algo-
rithm DSDV [2], which provides the overlay with an any-
to-any anonymous communication channel with low setup,
maintenance and communication overhead. By using space
efficient elliptic curve cryptography (ECC) public keys as peer
identifiers we obtain security against message tampering and
ability to establish end-to-end encrypted channels.

The remainder of this paper is organised as follows. Section
II presents previous work related to the problem. In Section III
we discuss in more details general requirements on our over-
lay, with elaboration on the actual overlay design in Section IV.
Section V discusses how the proposed overlay behaves when
it is under different kinds of attacks. An example of a real-
world application being built on top of our work is presented
in Section VI. Section VII provides final conclusions.

II. RELATED WORK

There are several different approaches to anonymous P2P
overlays. One common approach is to form groups of peers
within which messages are delivered via broadcast to achieve
anonymity of their receiver, as in P5 [3] or Hordes [4].
Similarly, for anonymity of a sender a probabilistic forwarding
is used in Crowds [5]. In every step a forwarding peer
randomly decides with a given probability whether to forward
the message to another randomly-chosen forwarding peer or
whether to deliver it to its final destination. AP3 [6] further
uses this method to build anonymous channels for accessing
Pastry DHT [7].

A similar approach to broadcasting is the usage of epidemic
(or gossip) protocols. MuON [8] achieves higher bandwidth
efficiency while preserving the level of anonymity of broad-
casting.

Another extensively used approach is onion routing [9].
A-Kad [10] adds anonymity to the Kademlia overlay [11].

In A-Kad a peer sets up anonymous channels using onion
routing over chosen sets of onion routers. Subsequently, they
uses these channels for publishing information into DHT. A
peer who wants to obtain a resource they found via DHT
then communicates with the resource provider over these
anonymous channels, thence neither of them knows the other
peer’s identity.

Pecan [12] further improves onion routing by relaxing a
requirement to establish circuits before a communication can
take place. A sender chooses for every request two sets of
routers—one for delivering the request itself and one for
anonymous routing of the response. The responding peer
therefore receives with the request also information necessary
for delivering the response.



The issue with onion routing is a requirement for a peer
to know routers in the network in order to either establish
circuits or to select path for their packets (in the case of Pecan).
Not only there is reliance on central directory server, but the
communication is also sensitive to churn. To improve these
properties while avoiding overhead of broadcast in a mutually
anonymous 2-party communication we employ features of ad-
hoc routing algorithms DSDV [2] and Babel [13].

DSDV is a simple loop-free routing algorithm. Although
not designed for anonymous communication, it well handles
communication between any two nodes by maintaining infor-
mation what is a next hop on the shortest path towards each
other node. Babel enhances DSDV and other ad-hoc routing
protocols and for usage in overlay network it replaces TTL-
based routing metric with a delay-based routing metric [14].
Aside from anonymity features, we improve in our routing
algorithm the usage of inherently present redundancy and try
to minimise communication overhead.

III. OUR REQUIREMENTS

Motivated by our application, a cryptocurrency exchange,
we impose several requirements we want the P2P overlay to
accomplish. First, a connection between a peer’s identifier and
their IP address must not be made known—not even to peer’s
neighbours if possible. Thereby users will experience up to
the same level of privacy as in cryptocurrencies themselves.
Second, even under this condition, we still need a way for
unicast-like communication between any two peers with any of
them being able to initiate the communication. Third, we want
to be as efficient in message delivery as possible, therefore
eliminating a highly anonymous, but also very inefficient
broadcasting mechanism. Fourth, for Coincer it is important
that any user is able to participate in the network, even if they
is behind a NAT. Fifth, a P2P network witnesses continuous
churn. On the other hand, its topology is implicitly redundant
which is desirable to use for improving reliability. And finally,
as a network of unknown nodes forms an inherently untrust-
worthy environment, we need reasonable ways for operating
in such an environment.

In this section we elaborate on these requirements.

A. Anonymity of Peers

Disconnecting peer’s identifier from their IP address servers
two basic goals. First, it is unlinkability of information or
actions to their real originator, which includes resource pos-
session, its provision or retrieval. It provides privacy to the
user. Second, it hinders situation of an attacker, because they
does not know who is who in the network and where. Beyond
simple network attacks, a user of Coincer might be a target of
a money heist which is significantly more difficult to execute
when the attacker does not know victim’s IP address.

In cryptocurrency networks it is usual that a user who
sends a transaction is indistinguishable from a user who only
forwards this transaction to other peers. This property ensures
that not even a direct connection of an attacker to their
intended victim gives them the information that this is actually

the user to be attacked. Therefore, we strengthen our former
requirement of anonymity in the network also to anonymity
towards neighbours.

B. Efficient Communication Between Peers

Generally, communication in a P2P network can be divided
into two categories: globally-relevant and private. Messages
belonging to the globally-relevant category define and main-
tain the state of the network (e.g., market orders in Coincer),
while private messages are part of a communication between
two specific peers, which includes transmission of a file in a
file sharing application or an execution of a cryptocurrency
trade in Coincer. Based on this division we also distinguish
between ways each of these two categories is delivered over
the network: while globally-relevant can be broadcast (or,
more efficiently, disseminated by a gossip protocol), flooding
the network with private messages addressed to a single
peer is not only very inefficient (although it is indeed very
anonymous), but also forms a scalability bottleneck for the
network. Therefore, we seek for a more ingenious routing
mechanism for the purpose of direct communication between
peers.

C. Possibility of Full Participation

P2P overlays often rely on the ability of peers to receive
incoming connections from the Internet, otherwise they cannot
fully participate in the overlay and their resource utilisation is
limited (e.g., in file sharing overlays). However, in real world
there are many users for whom this assumption is not true,
be it for any possible reason—a NAT due to a lack of IPv4
addresses, a restrictive firewall, or other potential cause.

Our goal is therefore to ensure that any peer can initiate
communication with any other peer without limitations or a
need for explicit path-building. This requirement also includes
all peers connecting to the network via Tor or other proxy
networks.

D. Redundancy

Churn belongs to natural phenomena of P2P networks. Peers
join and leave the network or just change their location within
it. While graceful departures are usually preceded by notices
and the network can adjust its paths, sudden disconnections
of peers, e.g., because of a failure of the underlying network
infrastructure, take time to detect and recover from, causing
broken routes and local disruptions of the overlay operation.

P2P networks contain peers with multiple connections,
forming a mesh. This inherent redundancy can be leveraged for
better routing resilience and fault-tolerant overlay connectivity,
therefore providing a quick recovery of overlay operation in
case of any failure.

IV. DESIGN OF THE OVERLAY

Unstructured P2P overlays resemble ad-hoc networks—
peers connect to the overlay at random points and there is
lack of any inner structure in the network, all peers are
equivalent. In order to avoid reliance on the ability to receive



new connections from other peers, we carry all communication
over existing connections among peers. Therefore, utilising an
ad-hoc routing algorithm, messages are delivered on hop-by-
hop basis, similarly to IP packets. For redundancy, each peer
maintains a set of connections to the network.

Some approaches equip messages with a time-to-live (TTL)
field to limit potential flooding of the network. However, we
drop it, because this overlay uses either one-hop messages,
messages supposed to reach all peers or messages routed
towards a single destination. Moreover, TTL is easy to spoof,
it creates problems with maintaining anonymity [15] and we
already employ other ways for detecting repeated messages.

All messages routed through the overlay carry an identifier
of their sender. However, any message sent only to a neighbour
(whose identifier is never known) does not contain neither the
identifier of sender, nor the identifier of receiver. Hence, when
a peer sends a message with their identifier, no neighbour
can tell whether the peer is the sender or whether they just
forwards the message.

A. Joining

Before a node connects to the network, they generates a key
pair. The public key is used as their identifier in the network.
We recommend a new identifier to be used every time a node
joins the network. However, if the application establishes long-
lasting interactions, the previous identifier may be required
for finishing open interactions. In such cases more identifiers
may be used at the same time, nonetheless only the newest is
allowed to establish new interactions.

Having an identifier, a node starts the following joining
procedure:

1) They establishes a connection to a node known to be in
the network.

2) The node asks this new neighbour for a list of addresses
of known nodes in order to update their database of
possible peers to connect to.

3) They repeats the procedure until it has enough of out-
going connections.

Initial seed addresses, used by nodes that have never before
connected to the network, can be for instance hard coded in
the application, provided manually by the user, served over
HTTP or obtained from DNS. If DNS is used, served records
need to have sufficiently low TTL (of the order of minutes) so
that if none of provided nodes is alive, the DNS can be queried
again after a while for a different set of records without hitting
a cache.

B. Routing

Ad-hoc networks use various routing algorithms, of which
we select as a base a proactive DSDV algorithm [2] as it
best accomplishes our requirements and fits in with achieving
anonymity of peers. Algorithm with our modifications follows.

When a peer wants to start actively participating in the
network, they needs to let the network know how to reach
them. Until this moment they is only a passive peer gathering
information about resources offered by other peers. If their

participation is to be initiated by broadcasting a message,
this message also serves the purpose of establishing routes.
However, for unicast-like communication, an announcement
of presence needs to be broadcast first, otherwise there will
be only a single path back.

Each peer tracks announcements of presence (or first broad-
cast messages) for each other peer. When a peer receives
such a message, they saves the information which neighbour
forwarded it to them. Neighbours are sorted by the order in
which the message is received from them. This order also
specifies a priority for selection of a route when delivering
a message to this peer. This way each peer in the network
knows where to forward messages for any other active peer
in the network, although they does not know neither the path
towards this peer, nor whether any of their neighbours is that
corresponding peer.

C. Loop-free Routing

Under normal circumstances the routing protocol does not
form loops. However, it is possible that the optimal route
breaks (e.g., some peer on the path leaves the network) and
the rest of routing information in the network causes messages
on this route to loop.

Solutions of other algorithms vary. DSDV [2] broadcasts
information about broken route on every node departure,
which ignores available redundancy in the network and might
generate large amount of traffic on high churn. In contrast
to that, Babel [13] uses short intervals between consecutive
announcements of presence as a preventive measure against
both loops and general disruption of routing. Nonetheless,
incurred overhead may become nonnegligible when number
of peers in the network is high.

Our solution is based on loop detection and last resort
reaction. In order to detect a loop, each peer maintains a
set of last n hashes of messages they forwarded in the last
minute with information about which neighbour forwarded
it to them. If a peer detects a message repetition from a
neighbour different from the first forwarder, they detected a
loop. To remove the loop, the peer deletes their best route for
given destination (which now contains a loop) and forwards
the message via the second best (which is now the first best)
route. When a peer has no route left, they broadcast a request
for announcement of presence. Therefore, if the peer is still
connected to the network, they will receive the request and
respond to it (again via broadcast), which refreshes routing
information among all peers.

Note that if a message comes for a second time from the
same neighbour, it only says that the neighbour sent it again
(and the message is ignored). If there was to be a loop, this
neighbour is supposed to detect it first.

D. Routing Table Updates

There is no mechanism in the proposed overlay that could in
a short time detect unannounced departures of peers. Not even
neighbours are able to detect it as the network cannot establish
connection between nodes and their identifiers. Therefore, all



routing table entries are assigned an expiration time. Hence,
if a peer wants to preserve routability of messages towards
them, they has to periodically rebroadcast their announcement
of presence. This must be one ahead of the expiration time,
otherwise the peer risks becoming unreachable.

Expiration ensures that peers do not store stale records and
utilise their resources in an efficient manner.

E. Graceful Departure

Disconnection of passive peers is trivial and no other peer in
the network needs to take any action. On the other hand, active
peers who propagate their presence, leave information in other
peers’ routing tables and possibly also in application-specific
data structures. However, sending an announcement about
departure and consequently disconnecting from neighbours
may lead to backward anonymity breach and exposure of
relation between peer’s identifier and IP address.

If the application conditions allow it, we suggest abandoning
the conception of graceful departure in favour of increased
anonymity of peers. Nonetheless, in applications that could
greatly benefit from early knowledge of peers’ departures,
especially in terms of resource saving, a peer broadcasts this
announcement in advance of their actual departure, therefore
making the possibility of raising correlations less likely.

F. Peers Exchange

Usually, peers exchange IP addresses either of their current
neighbours or of a subset of all nodes they know. Giving
away a list of peer’s neighbours is sensitive and potentially
exploitable information. Therefore, the list must not in any way
indicate which addresses are possibly the node’s neighbours.

Similarly, a receiver of such a list needs to exercise caution:
to randomly reorder addresses on the list and combine data
from several neighbours.

G. Cryptography

An anonymous overlay forms a very untrusted environment.
For safe and reliable communication over it we include several
cryptographic elements. First of all, we use public keys in
place of peers’ identifiers. Consequently, as every message to
be forwarded has to contain an identifier of its sender (note
that messages for neighbours do not), public keys of all active
peers are implicitly distributed over the network to all peers.

With key distribution secured, we require all messages
carrying the sender’s identifier to be signed by their key
corresponding to their identifier. Consequently, all peers are
required to perform signature verification of each received
message before its processing. If the verification fails, integrity
of the message has been corrupted and the message is therefore
silently discarded. Only messages with valid signatures are
allowed to be forwarded through the network.

For any unicast-like communication of two arbitrary peers
we require it to be encrypted in end-to-end fashion. To avoid
any complicated shared key agreement protocol we suggest
usage of elliptic curve cryptography (ECC) that is able to make
use of a very elegant ECDH algorithm for establishing a shared

key between respective peers without any extra communication
overhead [16]. Besides, keys of ECC schemes have the benefit
of being small in size.

V. ATTACK VECTORS

In this section we present an analysis of attacks deployable
against proposed overlay.

A. Man-in-the-Middle Attack

This is the most obvious attack vector as messages to distant
peers are always sent via other peers and certain messages
are even broadcast to everyone. Any peer could therefore
monitor contents of communication between particular peers
or even tamper with them. To prevent deliberate modifications
or random corruption of messages, all messages must include
digital signatures. To provide confidentiality, end-to-end en-
cryption of contents is used. In order to bypass complicated
key exchange procedures, peers use their public keys as their
identifiers. Therefore, any peer is able to address any other
peer and to start sending them encrypted messages right away,
and everyone is also able to verify signature of every message.

To save bandwidth and processing power, corrupted mes-
sages are not forwarded, but instead immediately silently
discarded.

Depending on a particular application, a peer acting as
a counterparty, but in fact carrying out this attack, could
be easily detected. Real parties can produce a proof using
their unique knowledge or possession which is very hard or
impossible for the attacker to forge. In our application, a
cryptocurrency exchange, this proof consists of a signature
of both parties’ identifiers by respective party’s “coins” (these
are identified by public keys in cryptocurrencies). Hence, the
attacker is quickly uncovered and the attack thwarted.

B. Replay Attack

While modifying messages is prevented by digital signa-
tures, attackers could still keep forwarded messages and send
them later to the network again. This might easily create false
state of affairs in the network, with severity varying depending
on a particular application.

To eliminate potential replay attacks, every message sent
within the network carries a nonce. The nonce must be a
positive ever-increasing number. This nonce is unique within
messages sent by one specific peer. If a peer reuses their
identifier across restarts, they also must remember the value
of their last used nonce. Otherwise, it might occur that if a
peer uses some nonces again then (a) their messages might be
discarded by some peers (possibly even by all of them), or (b)
an attacker might carry out a replay attack against this peer.
For peers with new identifiers this problem does not arise.

We distinct two types of nonces with regards to importance
of messages that carry them:



1) Message for Announcement of Presence: This is a very
special message, because it ensures routability within the
network and reachability of peers. Therefore, its nonce needs
to be stored separately so that it is not accidentally pruned
with stale nonces of other messages.

Repetition of this message from a neighbour that has already
sent it is ignored. Delaying of the announcement by some
neighbours only causes these neighbours to be assigned the
lowest priority for route selection.

2) Other Messages: Both kinds of messages—those that are
broadcast to every peer and those belonging to a communica-
tion with a specific peer only—may arrive out of order, i.e.,
in different order than they were originally sent. Therefore, it
is not sufficient to remember only the last nonce, because that
could easily cause discarding legitimate messages that arrived
later than expected.

Proposed solution is to store nonces of messages received
in recent moments (in Coincer we use one minute), which
is sufficient for legitimate traffic and still keeps associated
storage overhead in reasonable bounds. If a newly arrived
message has a nonce lower than the oldest nonce in the list,
it is discarded. If it is higher than the oldest nonce, but still
lower than the last one, the message is accepted, but its nonce
is not stored at the end of the list as normally, but—in order
to maintain the ever-increasing property of the nonce list—in
the position it should be stored so that the list remains sorted.
For its storage is then not used the real time of its reception,
but the same timestamp as of the nonce preceding it in its
position in the list. Stale nonces are always removed from the
list as soon as possible, except for the last one—at least one
nonce must always be remembered (only for newly connected
peers this list may be empty).

C. Sybil Attack

Under a Sybil attack, an attacker introduces into the network
many peers under their control [17]. The more peers, the
higher is the probability that a random new peer connects
solely to these malicious peers. Hence, the more outgoing
connections a peer maintains, the lower is the probability it
becomes a victim of this attack.

Sensitivity of each application to Sybil attacks needs to
be taken into account when considering a recommended
minimum number of outgoing connections. While possible
damage in a case of some applications might be negligible,
for others such an attack may pose a serious threat. Coincer is
an example of the first group; a representative of the second
group in general, not for this specific overlay, is Bitcoin.

In Bitcoin a user is provided with the transaction history
of the whole network. Therefore, if they is connected only to
attacker’s nodes, they can be tricked into believing in incorrect
state of the history, e.g., that they received some transactions,
although they did not in the real history. On the other hand,
it is not possible to cause harm to a user of Coincer, because
the underlying cryptocurrency protocol for trading ensures that
the attacker would have to successfully carry out a Sybil
attack against the user on at least one cryptocurrency (with

the consequences stated above). Nonetheless, at that moment
the attacker gains very little from carrying out a Sybil attack
also against Coincer itself.

D. Denial of Service Attack
A Denial of Service (DoS) attack can have many forms.

Generally, its goal is to prevent user(s) from achieving the
purpose of the application or network. We cover only a
generic attack scenario from the overlay perspective—flooding
the network—, i.e., leaving out any application-specific DoS
variations.

Peers injecting excessive amount of messages into the
network are consuming available resources in bad faith and
need to be expelled out of the network. If a peer receives
too many messages from a particular neighbour, first they
should either limit forwarding of these messages or even
filter them based on their importance for the network. If the
neighbour continues flooding, the peer closes its connection
to this neighbour.

VI. APPLICATION

The application described in this section has been our
original motivation for development of the P2P overlay de-
scribed in this paper. Our use case is a decentralised exchange
for cryptocurrencies—Coincer [1]. It leverages cryptographic
features of cryptocurrencies to allow users to safely exchange
different cryptocurrencies directly between themselves without
any third party. Cryptocurrency applications are generally
privacy-sensitive and attacks-attracting, therefore we strove to
achieve similar level of anonymity as cryptocurrencies usually
provide.

Purpose of Coincer, from the perspective of this paper, is
to globally maintain a decentralised market of users’ sell/buy
offers on top of the overlay and to provide an appropriate
communication channel for execution of trades between users.
Therefore, it utilises both available communication patterns—
market messages for distribution of offers are broadcast, while
communication related to particular trade between some two
peers is carried out in unicast fashion. The latter also makes
use of implicitly available means for encryption of messages,
which is important for privacy. Also very useful is the feature
of integrity assurance of all messages through digital signa-
tures, because it precludes the possibility of impersonating
honest users by an attacker.

Coincer itself does not extend the list of possible attacks on
the overlay. It rather makes several of the described attacks
harder to execute, namely the man-in-the-middle attack and the
Sybil attack. In the case of the Sybil attack, an attacker has to
also carry out a successful Sybil attack in the cryptocurrency
network where the victim would like to buy coins from
the attacker. However, under such conditions it is no longer
necessary to execute a Sybil attack in Coincer’s network,
because it does not influence in any way the primary attack
itself.

The proposed overlay enables Coincer to accomplish its
goals, while providing good protection and level of anonymity
to the users with a reasonably low overhead.



Coincer is published as a free software and its development
version is already publicly available.

VII. CONCLUSION

We addressed a problem of safe mutually anonymous
communication in a P2P overlay. We leveraged similarities
between an ad-hoc network and an unstructured P2P overlay
in the design of our overlay in order to provide desired
anonymity properties. As a result, any peer in the overlay
is able to initiate communication with another peer, without
knowing their real IP address—using only their identifier
within the overlay. Thanks to establishing peers’ public keys
as identifiers, every message is digitally signed and the usage
of ECC provides an instant access to end-to-end encryption
without any need for negotiation of a shared key. Usefulness of
our proposal for privacy-sensitive applications is demonstrated
on a decentralised cryptocurrency exchange Coincer.

ACKNOWLEDGEMENT

The authors would like to thank all reviewers for their
valuable feedback which helped improve the paper.

REFERENCES

[1] M. Zima, “Coincer.” [Online]. Available: https://www.coincer.org/
[2] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced

distance-vector routing (DSDV) for mobile computers,” in ACM SIG-
COMM computer communication review, vol. 24. ACM, 1994, pp.
234–244.

[3] R. Sherwood, B. Bhattacharjee, and A. Srinivasan, “P5: A protocol
for scalable anonymous communication,” Journal of Computer
Security, vol. 13, no. 6, pp. 839–876, 2005. [Online]. Available:
http://content.iospress.com/articles/journal-of-computer-security/jcs245

[4] B. N. Levine and C. Shields, “Hordes — A Multicast Based Protocol for
Anonymity,” Journal of Computer Security, vol. 10, no. 3, pp. 213–240,
2002.

[5] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web
transactions,” ACM Transactions on Information and System Security
(TISSEC), vol. 1, no. 1, pp. 66–92, 1998. [Online]. Available:
http://dl.acm.org/citation.cfm?id=290168

[6] A. Mislove, G. Oberoi, A. Post, C. Reis, P. Druschel, and D. S.
Wallach, “AP3: Cooperative, decentralized anonymous communication,”
in Proceedings of the 11th workshop on ACM SIGOPS European
workshop. ACM, 2004, p. 30. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1133578

[7] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems,” in
Middleware 2001. Springer, 2001, pp. 329–350. [Online]. Available:
http://link.springer.com/chapter/10.1007/3-540-45518-3 18

[8] N. Bansod, A. Malgi, B. K. Choi, and J. Mayo, “MuON: Epidemic
based mutual anonymity in unstructured P2P networks,” Computer
Networks, vol. 52, no. 5, pp. 915–934, Apr. 2008. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S1389128607003349

[9] M. Reed, P. Syverson, and D. Goldschlag, “Anonymous connections and
onion routing,” IEEE Journal on Selected Areas in Communications,
vol. 16, no. 4, pp. 482–494, May 1998. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=668972

[10] Y. Ni, D. Nyang, and X. Wang, “A-Kad: an anonymous P2P protocol
based on Kad network,” in Mobile Adhoc and Sensor Systems, 2009.
MASS’09. IEEE 6th International Conference on. IEEE, 2009, pp.
747–752. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?
arnumber=5336924

[11] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer
information system based on the xor metric,” in Peer-to-Peer
Systems. Springer, 2002, pp. 53–65. [Online]. Available: http:
//link.springer.com/10.1007%2F3-540-45748-8 5

[12] G. Xu, L. Aguilera, and Y. Guan, “Pecan: A circuit-less p2p
design for anonymity,” in Global Communications Conference
(GLOBECOM), 2012 IEEE. IEEE, 2012, pp. 820–825. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6503214

[13] J. Chroboczek, “RFC 6126: The Babel routing protocol,” 2011.
[Online]. Available: http://tools.ietf.org/html/rfc6126

[14] B. Jonglez, M. Boutier, and J. Chroboczek, “A delay-based routing
metric,” arXiv preprint arXiv:1403.3488, 2014. [Online]. Available:
http://arxiv.org/abs/1403.3488

[15] R.-Y. Xiao, “Survey on anonymity in unstructured peer-to-peer
systems,” Journal of Computer Science and Technology, vol. 23, no. 4,
pp. 660–671, 2008. [Online]. Available: http://link.springer.com/article/
10.1007/s11390-008-9162-7

[16] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone, “An Effi-
cient Protocol for Authenticated Key Agreement,” Designs, Codes and
Cryptography, Tech. Rep., 1998.

[17] J. R. Douceur, “The Sybil Attack,” in Peer-to-peer Systems. Springer,
2002, pp. 251–260. [Online]. Available: http://link.springer.com/chapter/
10.1007/3-540-45748-8 24


