Inputs Reduction for More Space in Bitcoin Blocks

Michal Zima
Faculty of Informatics
Masaryk University
Brno, Czech Republic
E-mail: xzimal @fi.muni.cz

Abstract—Bitcoin blockchain is growing big, yet its transaction
capacity hit its limits in 2017. One solution heavily discussed
within the bitcoin community is to let it grow faster by increasing
size of the blocks. However, making transactions smaller instead
of blocks bigger is more sustainable and also brings other addi-
tional benefits. In this paper, we focus on space wasted by non-
cryptographic use of hashes and uncompressed numbers within
transaction inputs. In our analyses, we show that transactions
can be made approximately 16% smaller, depending on their
complexity.

I. INTRODUCTION

Scalability has been one of the hot topics in the bitcoin
community in recent years. In a surge of Bitcoins popularity
and spreading usage, the number of transactions rose to the
point that transactions started competing with one another for
being included in a block. This led to an emergence of a
transaction fee market and a development of various scaling
proposals.

All processed transactions come with a cost. They need to
be stored by all full nodes indefinitely. Most scaling proposals
focus on increasing transaction capacity by merely allowing
more transactions to be processed. While this lessens the issue
of low transaction capacity to some extent, it increases the cost
of storage. Therefore, we focus on the issue of lowering this
cost: allowing more transactions to be processed without in-
creasing the storage requirement beyond their current growth.

The main contribution of this paper lies in the reduction
of wasteful, redundant data in transaction inputs. We propose
both fields of an output reference to be reduced: a transaction
hash to its unique prefix and an output index to a variable
integer. Our work may shrink transactions and therefore also
blocks for approximately 11-16%.

The remainder of this paper is organised as follows. Section
IT presents previous work related to the problem. In Sect.
IIT we discuss details of the structure of bitcoin transactions.
The following Sect. IV presents our proposed solution for
reducing the size of transactions with compatibility fallbacks
for software not capable of full support of the proposal in
Sect. V. Section VI discusses how the input reduction affects
existing cryptocurrencies and required changes. Analyses are
presented in Sect. VII. Section VIII provides final conclusions.

II. RELATED WORK

We divide Bitcoin scaling proposals for scaling its
blockchains transaction capacity into three classes. We call as

blockchain-level scaling, block-level scaling and transaction-
level scaling. However, blockchain-level scaling is far beyond
the scope of this paper; therefore we omit details of this class.
Nonetheless, a good overview of it is given in [1].

A. Block-level Scaling

This class of proposals focuses on methods to make blocks
bigger so that more transactions can fit inside. A wide range
of formal proposals was developed.

Garzik et al. devised a scheme to determine the block size
limit from miners votes [2]. A similar concept was developed
by BtcDrak [3]. Blocks that contain votes for a block size
limit increase are more difficult to mine, therefore imposing
an implicit cost for the voting miners.

Andresen proposed a gradual growth of the block size limit
from IMB limit to 8MB—at a given rate in 20 years time [4].
Garzik simplified this proposal into a simple one-time increase
of the block size limit to 2MB [5]. Andresen later followed
this work with a further refinement of related parameters [6].

Wauille suggested a method of loosely following a techno-
logical growth, namely the growth internet bandwidth, which
translates into a 4.4% increase of the block size limit every
~97 days (i.e., ~17.7% per year) [7]. A different proposal by
t.khan aims for automatic adjustment of the block size limit
in a way similar to mining difficulty [8]. Its goal is to keep
blocks on average 75% full, wherefore the limit is increased
or decreased accordingly every 2016 blocks, based on sizes of
blocks from the previous period. Another dynamic adjustment
scheme was proposed by Chakraborty: instead of taking into
account only the actual size of recent blocks, it also calculates
with overall transaction fees spent in those blocks [9].

A combination of static and dynamic increasing of the
block size limit can be found in work of Sanchez [10]. They
proposed first increasing the limit in several steps to given
values, subsequently followed by a dynamic mechanism for
increases on as-needed basis.

A novel approach to enlarging space in blocks is represented
by extension blocks [11]. Instead of changing the legacy
block size limit, authors create an extension to every block.
This extension contains a distinct transaction history, i.e.,
transactions within extension blocks are knowingly carried out
within the extension blocks. Nevertheless, the money supply
is shared with standard blocks and transaction history, while
there is firm protection against double spending. This proposal



is related to an earlier work on “sidechains”, which build not
just extensions to blocks, but a separate blockchain [12].

However, the common issue of these competing proposals
was not being widely accepted within the bitcoin community
as the “right” scaling solution.

B. Transaction-level Scaling

In contrast to block-level scaling proposals, there is a
significantly lower focus on finding inner reserves for scaling
within blocks, i.e., in transactions.

The most significant work in this area is a proposal call
Segregated Witness [13]. Under this proposal, input part of the
script (called a “witness”) is moved to a separate structure—a
witness tree that is attached to the block, therefore not affecting
the original block size as it is perceived by legacy nodes. This
proposal has already been implemented into Bitcoin—in a way
that is backward compatible with legacy software.

A competing proposal called Flexible Transactions aimed
at reworking the transaction structure (which is detailed in the
following Sect. III) so that it would be possible to omit fields
that are not used [14]. The author claims that this improvement
would make transactions 3% smaller on average.

III. TRANSACTION STRUCTURE

Every bitcoin transaction consists of a version field, a set of
inputs, a set of outputs and a time lock field. On a binary level,
the version and time lock fields are 32-bit integers and both
sets are preceded by a variable-length integer that efficiently
encodes a number of items in each set. [15]

Every input comprises a reference to some previous
output—in the form of outputs transaction hash and a 32-
bit integer index of the output within its transaction—, an
input part of a transaction script and a 32-bit integer sequence
number. The script is a byte array, again preceded by a variable
integer with its length.

Every output comprises an amount field and an output part
of a transaction script. The script is represented in the same
way as in inputs, including its length. The amount field is a
64-bit integer.

Clearly, the structure of bitcoin transactions is already very
dense. It would be needed to remove fields (and thence
also their related functionality) to make transactions smaller.
Among the very few other options is moving the script out
of inputs, which is being done by the Segregated Witness
technique [13].

Another option is discussed in this paper: a focus on output
reference in inputs.

IV. INPUTS REDUCTION

Output reference in inputs is formed by two fields of a fixed
length: a 32-byte transaction hash and a 4-byte index. While
the transaction hash plays a cryptographically significant role
within the blockchain when storing transactions in blocks (it
prevents transaction replacement attack on mined blocks), its
role within inputs is different. In an input, the hash provides a
unique identifier of the transaction where the referenced output

is situated. The index then specifies what number the output
is within the said transaction.

Given the vast value space of 2256 (the transaction hash) and
a very limited number of transactions that take place within
the bitcoin system, we can say that a probability of identifier
collision remains sufficiently negligible even for significant
reductions to 160 or 128bits.

Nonetheless, we propose to use as few bytes as possible—
through the use of a variable integer-like mechanism—and
compensate for collisions that will occur.

A. Collision Resolution

At the moment of transaction verification, there might be
several transactions whose hashes share the same prefix as is
specified in the input being verified. To resolve this collision,
the verifier takes into account only transactions that were
included in blocks of the same or lower height than the
transaction being verified. Also, to limit the likelihood of a
collision, only unspent outputs can match to the given input.

It needs to be noted that collisions beyond the stated level
are not allowed. This way we ensure that referenced out-
puts can be unambiguously identified at all times. Therefore,
computational requirements are not unnecessarily increased by
iterating through a set of candidate outputs and verifying their
scripts.

B. Output Index Size Reduction

Output index is the second component of an output refer-
ence in inputs. As we show in Sect. VII, 99.97% of bitcoin
transactions contain only up to 252 outputs. We can leverage
this finding to further reduce the size of inputs.

Instead of a fixed-size 4-byte field, we propose usage of a
variable integer. A variable integer is a common data structure
in Bitcoin and allows to store values 0-252 in a single byte—
larger values then need 3 or 5 bytes. This means that almost
all outputs could be referenced with a 1-byte index field.

On the other hand, all coinbase transactions would need 5
bytes instead of 4 to encode the value OxFFFFFFFF that is
used as an index in their dummy input. However, this overhead
is negligible in the total impact.

V. FALLBACKS

In situations in which a wallet software is unable to de-
termine a unique reduced transaction hash, e.g., it may be
still synchronising with the network, constructs and signs
the transaction offline or simply lacks this capability, it can
still create a transaction. There are generally two possible
approaches:

1) “Try-and-see”—use the best possible estimate. If such
transaction is rejected by peers, the hash length can be
extended until the transaction gets accepted.

2) Not to use reduced hashes—i.e., to reference the trans-
action with its full transaction hash, which is guaranteed
to be unique [16].

Neither of these solutions is ideal: the first one gives out
privacy to the peers and makes the node susceptible from an



attack, in which other nodes may force it to use a full hash; the
second one does not suffer from this issue but is even slightly
more inefficient than current bitcoin transactions.

VI. COMPATIBILITY WITH CURRENT CRYPTOCURRENCIES

Our proposal of hash and index reduction is a change not
directly compatible with todays cryptocurrencies'. However,
it can be implemented in the form of a soft fork extension.
This means that while all mining nodes need to upgrade and
support this change, other nodes may work within the network
even without upgrading.

The reduced structures constitute a new version of a bitcoin
transaction. Legacy implementations will, therefore, ignore
them as non-standard. An upgrade is necessary not only in
order to spend from the new transactions, but also to support
their broadcast through the network.

Overall necessary changes are twofold: in software and in
the bitcoin protocol.

A. Software Changes

From the perspective of software internals, a new structure
for determining a unique prefix might be needed. For effi-
ciency of finding a unique reduced hash, we suggest usage
of a trie-based index. Software that already uses a trie-like
structure for indexing the UTXO set will probably not need
significant changes.

B. Protocol Changes

SPV clients do not store the UTXO set and therefore are not
capable of determining an optimal length of reduced hashes.
They can either employ a fallback strategy as discussed in
Sect. V or rely on the network to provide them necessary
data.

We see multiple possible approaches to implement this
support. Nonetheless, there is no clear best option; therefore
we outline all of them and leave the final choice on developers.

1) On Demand Prefix Calculation: The most straightfor-
ward way of providing SPV nodes with a unique prefix is to
simply offload the task of finding it to its neighbouring full
nodes. An SPV node directly asks for a unique prefix of a give
transaction output. This approach is the least communicational
and computational intensive, but it is also the one with the
worst privacy properties—the full node is able to link the
output in question to the node with high probability.

2) Prefix Resolving: Another possibility for an SPV node
is to guess a prefix and ask some of its neighbouring full
nodes to return all matching transaction outputs. This approach
may be communicationally expensive if a larger number of
transaction outputs match the prefix (although a node should
be able to refuse to return them if their count is higher than
some threshold). Nonetheless, the SPV node can compute the
unique prefix by itself from returned data.

On the other hand, if the prefix is longer than necessary,
there will be only a single match. While this gives a usable

IWe consider only cryptocurrencies derived from Bitcoin.

result, this prefix may not be optimal (i.e., the shortest pos-
sible). The node might want to repeat the query for a shorter
prefix. Also, this scenario is privacy-wise equivalent to the
previous approach.

3) Prefix Quantification: A similar approach to the prefix
resolving is to not actually give the asking node the full
list of transaction outputs. Instead, the full node returns a
number of matching outputs. This approach saves most of the
traffic between the nodes, although it leaves the SPV node
with information ‘“usable”/“not usable.” Therefore, it might
require more communication rounds for the SPV node to
obtain intended information.

4) No Change: Even without special protocol messages,
there is still a way to support hash reduction for SPV nodes
as indicated in Sect. V. A node constructs a transaction using
a short transaction output prefixes and broadcasts it. If the
chosen prefix is ambiguous, the neighbouring node rejects the
transaction together with an indication which output prefix
was not unique, thus giving the originating node a chance to
construct a new transaction and try again.

Apparently, this induces more traffic between the nodes
and similarly to the other approaches may leak a connection
between the outputs used and the SPV node.

VII. ANALYSES

We evaluate potential impact of our proposals on Bitcoin.
We choose Bitcoin, because it has the largest transaction base
among cryptocurrencies. We show total distribution of the
number of outputs within transactions in order to illustrate
the relevance of output index reduction. We then analyse the
UTXO set to obtain a set of unique reduced hashes and analyse
their lengths.

A. Output Indices

The goal of analysing output indices is to see how big
indices occur in bitcoin transactions (i.e., how many outputs
transactions usually have). That helps us estimate the impact
of output index compression.

We analysed the UTXO set. Out of 54,975,282 transaction
outputs, 82.7% were of index less or equal to 252. These
could be referenced from inputs with only a single byte. The
rest indices could be encoded in inputs with 3-byte variable
integers. Compression of output indices within inputs spending
the whole UTXO set would, therefore, save 139 MiB of space.
Given a transaction with two inputs and two standard outputs
(size of which is typically 373B), we save 6 bytes, i.e., 1.6%.

Another interesting insight can be derived from historical
data. Out of 298,454,759 transactions we analysed, 99.97%
transactions contained up to 252 outputs. This indicates that
smaller transactions are more common than the UTXO set
would suggest. The distribution of the number of outputs in
transactions is visualised in Fig. 1.

B. Output Hash Prefixes

Average output transaction hash prefix is related to the
number of unspent outputs in the whole set, because collisions



1x10¢

*
%108
1x107 %
«
1106 ut
o ®
> .
g *
£ 100000 o
g x
b K *
2 *
5 10000 d o fe
f: Rt .
© * *
1000 x
¥y *
¥ * * %
100 .
*
£
10
«
F 3
——
1
1 10 100 1000 10000

number of outputs

Fig. 1. Distribution of the number of outputs in transactions.

Distribution of prefix lengths
80

70
60
50
40
30
20

Frequency (percentage)

10

Prefix length (bytes)

Fig. 2. Distribution of lengths of unique hash prefixes within UTXO.

are evaluated only within the current UTXO set. Distribution
of prefix lengths is shown in Fig. 2. In the set of unspent
outputs, most prefixes are unique within 4 bytes.

In the above-mentioned transaction this result translates into
savings of 54 bytes, i.e., 14.5%. Together with compressed
output index, we can save 16% in such transactions.

VIII. CONCLUSION

Scaling the bitcoin blockchain beyond its transaction ca-
pacity has been a subject of many efforts within the bitcoin
community. However, most of the proposals focus only on
methods for raising the block size limit to simply allow more
transactions to be processed. That would have an impact on
nodes that store and provide the bitcoin blockchain to the
network—doing so would become more expensive.

In this paper, we addressed this issue from a different
angle—by proposing a method to reduce the size of individual
transactions, which facilitates the same goal, but without
the aforementioned cost. Transaction inputs contain output
references: by a transaction hash and output index. We reduce
the size of the output index to 1B from 4B and the size of the
transaction hash to 5B from 32B in most cases. By doing so,
we reduce transactions approximately 11-16% in size.

For future work, we want to focus on optimising the
implementation side to minimise the burden caused by the

need for the nodes to be able to look up unique prefixes to
transaction hashes.

REFERENCES

[1] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. Gn Sirer, D. Song, and R. Wattenhofer,
“On Scaling Decentralized Blockchains,” in Financial Cryptography
and Data Security, J. Clark, S. Meiklejohn, P. Y. Ryan, D. Wallach,
M. Brenner, and K. Rohloff, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, vol. 9604, pp. 106-125. [Online]. Available:
http://link.springer.com/10.1007/978-3-662-53357-4_8

[2] J. Garzik, T. Harding, and D. V. Johannsson, “BIP 100: Dynamic
maximum block size by miner vote,” Jun. 2015. [Online]. Available:
https://github.com/jgarzik/bip100/blob/master/bip-0100.mediawiki

[3] BtcDrak, “BIP 105: Consensus based block size retargeting algorithm,”
Aug. 2015. [Online]. Available: https://github.com/bitcoin/bips/blob/
master/bip-0105.mediawiki

[4] G. Andresen, “BIP 101: Increase maximum block size,” Jun.
2015. [Online]. Available: https://github.com/bitcoin/bips/blob/master/
bip-0101.mediawiki

[5] J. Garzik, “BIP 102: Block size increase to 2mb,” Jun.
2015. [Online]. Available: https://github.com/bitcoin/bips/blob/master/
bip-0102.mediawiki

[6] G. Andresen, “BIP 109: Two million byte size limit with sigop
and sighash limits,” Jan. 2016. [Online]. Available: https://github.com/
bitcoin/bips/blob/master/bip-0109.mediawiki

[71 P. Wuille, “BIP 103: Block size following technological growth,” Jul.
2015. [Online]. Available: https://github.com/bitcoin/bips/blob/master/
bip-0103.mediawiki

[8] tkhan, “BIP 104: 'Block75’ — Max block size like difficulty,” Jan.
2017. [Online]. Available: https://github.com/bitcoin/bips/blob/master/
bip-0104.mediawiki

[9] U. Chakraborty, “BIP 106: Dynamically Controlled Bitcoin Block Size
Max Cap,” Aug. 2015. [Online]. Available: https://github.com/bitcoin/
bips/blob/master/bip-0106.mediawiki

[10] W. Y. Sanchez, “BIP 107: Dynamic limit on the block size,” Sep.
2015. [Online]. Available: https://github.com/bitcoin/bips/blob/master/
bip-0107.mediawiki

[11] C. Jeffrey, J. Poon, F. Indutny, and S. Pair, “Extension Blocks,”
Mar. 2017. [Online]. Available: https://github.com/tothemoon-org/
extension-blocks/blob/master/spec.md

[12] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory
Maxwell, Andrew Miller, Andrew Poelstra, Jorge Timon, and Pieter
Wauille, “Enabling Blockchain Innovations with Pegged Sidechains,”
Oct. 2014. [Online]. Available: https://blockstream.com/sidechains.pdf

[13] E. Lombrozo, J. Lau, and P. Wuille, “BIP 141: Segregated Witness,”
Dec. 2015. [Online]. Available: https://github.com/bitcoin/bips/blob/
master/bip-0141.mediawiki

[14] T. Zander, “Flexible Transactions,” Jul. 2016. [Online]. Available:
https://zander.github.io/posts/flexible_transactions/

[15] A. M. Antonopoulos, Mastering Bitcoin, first edition ed.
CA: O’Reilly, 2015.

[16] P. Wuille, “BIP 30: Duplicate transactions,” Feb. 2012. [Online]. Avail-
able: https://github.com/bitcoin/bips/blob/master/bip-0030.mediawiki

”

Sebastopol



